- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Gokirmak, Ali (3)
-
Scoggin, Jake (3)
-
Silva, Helena (3)
-
Kan'an, Nadim H. (1)
-
Kashem, Md Tashfiq (1)
-
Kashem, Md_Tashfiq_Bin (1)
-
Khan, Raihan Sayeed (1)
-
Woods, Zachary (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We model the current density in a semiconductor based on the drift-diffusion transport of the charge carriers to accurately determine the thermoelectric effects in the bulk material (Thomson effect) and material junctions (Peltier effect). We utilize the model to perform 2-D finite element simulations of mushroom phase change memory cell with a critical dimension of 20 nm using temperature and electric field dependent material parameters and analyze the contributions of symmetric Joule heating and asymmetric thermoelectric heats during reset and set operations. We investigate the effect of altering the direction of current flow by changing the connection point between the cell and the access device and observe that, corresponding change in thermoelectric effects cause significant difference in operation dynamics, temperature distribution profiles, amorphous volume, energy requirement and resistance contrast between reset and set states.more » « less
-
Khan, Raihan Sayeed; Kan'an, Nadim H.; Scoggin, Jake; Silva, Helena; Gokirmak, Ali (, Materials Science in Semiconductor Processing)null (Ed.)
-
Kashem, Md_Tashfiq_Bin; Scoggin, Jake; Woods, Zachary; Silva, Helena; Gokirmak, Ali (, physica status solidi (RRL) – Rapid Research Letters)Herein, a finite element simulation framework for phase‐change memory devices that simultaneously solves for current continuity, electrothermal heating, and crystallization–amorphization dynamics using electrothermal models and dynamic material parameters that are functions of electric field and temperature is described. In this latest model, an electric field‐ and temperature‐dependent electrical conductivity model of stable amorphous Ge2Sb2Te5(GST) obtained from experiments performed on GST line cells to study Read, Reset, and Set operations of mushroom cells is incorporated. The effects of current polarity, heater height, Reset pulse rise and fall times, access device configuration, and ambient temperature are analyzed. The simulation results predict a 2x change in Reset current requirements with different current polarity due to thermoelectric effects. Heater height plays a significant role in thermal losses; ≈16% decrease in Reset current for 4x increase in the heater height is obtained. Increase in the ambient temperature results in a linear decrease in the Reset power required to achieve the same Reset/Set resistance contrast.more » « less
An official website of the United States government
